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Introduction

Adjusting for unmeasured spatial confounders

▶ Environmental and epidemiological data are often
observational and spatially correlated

▶ A fundamental task is to estimate the effect of a treatment
variable on a response variable

▶ The key assumption that there are no missing confounders
is generally impossible to verify

▶ However, it may be possible to remove the effects of
unmeasured confounders that are smooth spatial functions

▶ We examine several methods to adjust for missing spatial
confounding variables



Introduction

Motivating Example

▶ Wu et al (2020) 1 found that an increase of 1 µg/m3 in
ambient fine particulate matter (PM2.5) is associated with a
15% increase in the COVID-19 mortality rate.

▶ The response variable Y is the cumulative COVID-19
mortality counts through May 12, 2020 for US counties.

▶ The exposure variable X is county-level average exposure
to PM2.5 for 2000-2016

1
Wu, Nethery, Sabath, Braun, Dominici (2020). Air pollution and COVID-19 mortality in the United States:

Strengths and limitations of an ecological regression analysis, Science Advances.
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Exposure variable, PM2.5 concentration

4 8 12
mean PM2.5
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Outcome variable, log mortality rate

−12 −10 −8 −6
Log(deaths/population)



Introduction

Other applications

▶ Wildland fires → increased air pollution?

▶ Using an app → reduced air pollution exposure?

▶ Fishing regulations → ecological diversity?
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Standard spatial linear regression model

▶ The response at location s ∈ R2 is Y (s)

▶ The treatment variable of interest is A(s)

▶ The model is Y (s) = β0 + A(s)βA + θ(s) + ε(s)

▶ Our goal is to estimate βA

▶ The residuals have two components: θ(s) is spatially
correlated and ε(s) iid∼ Normal(0, τ2)



Introduction

Standard spatial linear regression model

▶ The spatial term θ(s) is a Gaussian process with
E{θ(s)} = 0 and Var{θ(s)} = σ2

▶ The correlation decays with distance

Cor{θ(si), θ(sj)} = ρ(dij)

where dij is the distance between s1 and sj

▶ For example, the exponential correlation is

ρ(d) = exp(−d/ϕ)



Introduction

Potential confounding variables

▶ Variable X (s) is a confounder if it is correlated with A(s)
and Y (s)

▶ It is a spatial confounder if has spatial correlation

▶ It is an missing spatial confounder it is unknown or
unobserved



Introduction

Missing confounders and residual correlation

▶ Say the truth is Y (s) = β0 + A(s)βA + X (s)βX + ε(s)

▶ If X is observed, we can use non-spatial regression

▶ This would be fine even if X and A are correlated

▶ If X is unobserved, it would contribute to spatial
component of the error term X (s) + ε(s)

▶ We might fit the spatial model

Y (s) = β0 + A(s)βA + θ(s) + ε(s)

and hope that θ accounts for X



Introduction

Simulation with a missing spatial confounder

▶ We generate X (s) and A(s) as spatial processes

▶ The correlation between X and A ranges from 0 to 1

▶ The data are generated as

Y (s) = A(s)βA + X (s)βX + ε(s)

where βA = βX = 1 and ε(s) iid∼ Normal(0,0.12)

▶ We fit non-spatial and spatial regression models that
exclude X
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Coverage and root mean squared error for βA
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▶ Spatial regression works well when Cor{X (s),A(s)} = 0
▶ However, even a small correlation causes huge problems
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Possible remedies for a missing spatial confounder1

1. Scientific knowledge

2. Propensity scores

3. Matching

4. Mean adjustments

1
Reich, Yang, Guan, Giffin, Miller, Rappold. (2020). A review of spatial causal inference methods for

environmental and epidemiological applications. https://arxiv.org/abs/2007.02714



(1) Scientific knowledge

Adding known confounders

▶ Wu et al include several potential confounder variables:

▶ Climate variables such as temperature
▶ SES variables including income and race
▶ Access to ICU beds

▶ Call the known confounders W1(s), ...,Wp(s)

▶ The fitted model is

Y (s) = β0 +

p∑
j=1

Wj(s)αj + A(s)βA + θ(s) + ε(s)

▶ A logical extension to environmental application is to
replace the Wj(s) with numerical model output



(1) Scientific knowledge

EXAMPLE: Adding mathematical/process models

▶ Fine particular matter (PM2.5) is a criteria pollutant
monitored by the EPA to protect human health

▶ In the US, emissions of PM2.5 from most sources are
steadily declining except for forest fire smoke

▶ How much PM2.5 and health burden is causally-attributed
to wildfires?

▶ This is difficult to answer directly because only total PM2.5
(background + fire) can be measured

▶ We 2 combine numerical models (CMAQ), observational
data and causal inference

2Larsen et al. A spatial causal analysis of wildland fire-contributed PM2.5
using numerical model output. Annals of Applied Statistics.



(1) Scientific knowledge

CMAQ: The Community Multiscale Air Quality
Modeling System



(1) Scientific knowledge

Annual average CMAQ (12km × 12km)



(1) Scientific knowledge

CMAQ run without fires



(1) Scientific knowledge

Difference between the runs (as % of total)



(1) Scientific knowledge

EPA Monitoring Stations (background + fire)

PM2.5 is measured every 3-6 days; this is the 2008-2012 average



(1) Scientific knowledge

Time series plot for one site in Northern CA



(1) Scientific knowledge

Data sources and potential outcomes notation

▶ Monitor data at location s and day t : Yt(s)

▶ CMAQ run without fires: θ̂t(s)

▶ CMAQ run with fires: θ̂t(s) + δ̂t(s)

▶ The “treatment” is the regime

▶ A = 0: world without wildland fires

▶ A = 1: current world with wildland fires

▶ Yt(s,0) and Yt(s,1) are the potential PM2.5 outcomes

▶ Model: Yt(s,0) = θt(s) and Yt(s,1) = θt(s) + δt(s)

▶ θt and δt are stochastic processes



(1) Scientific knowledge

Potential outcomes framework

▶ The causal effect is

∆(s) = E[Yt(s,1)− Yt(s,0)]

where the average is over the distribution of fires over the
entire spatial domain

▶ Challenge: we never observe data under A = 0

▶ To address this we use

▶ CMAQ output

▶ Causal assumptions



(1) Scientific knowledge

Assumptions

We assume there exist
▶ Ct(s) ∈ {0,1} where s is affected by smoke iff Ct(s) = 1
▶ Bias-correction functions B0 and B1

so that the following assumptions hold:

(A1) Consistency: Yt(s) = Yt [s,Ct(s)]

(A2) No unmeasured confounders given model output:

θt(s) = B0[θ̂t(s)] + e1t(s) and δt(s) = B1[δ̂t(s)] + e2t(s),

where et(s) = [e1t ,e2t ] is independent of A and C



(1) Scientific knowledge

Assumptions

Are these assumptions reasonable?

▶ (A1) assumes that we have some observations we are
sure are not affected by fire smoke ... probably OK?

▶ (A2) assumes that the CMAQ modelers have included the
important drivers of fine particulate matter .... maybe OK?
Have we accounted for all feedback loops?



(1) Scientific knowledge

Causal interpretation

▶ Theory: We prove that under these assumptions the
estimate effect has a causal interpretation

▶ We specify parametric models for the bias correction
functions B0 and B1 and the spatial process et(s)

▶ Theory: We show that all parameters, including the
correlation between counterfactuals, are identifiable

▶ This serves as a basis for using a Bayesian approach to
estimating ∆(s) and quantify its uncertainty



(1) Scientific knowledge

Data and estimates for one site in CA



(1) Scientific knowledge

Causal estimate, ∆(s), posterior mean



(1) Scientific knowledge

Cumulative health burden by county



(2) Propensity scores

EXAMPLE: Propensity scores

▶ Smoke Sense is a cell phone app design by the US EPA to
educate and engage citizens

▶ The app provides users current and forecasted air quality
and alerts of fires

▶ Users record their smoke observations, health symptoms
and preventative actions

▶ Users also play educations games, earn badges, etc.



(2) Propensity scores

The smoke Sense app



(2) Propensity scores

Smoke Sense data and notation

▶ Response: Yit is the number of self-reported symptoms
(asthma attack, chest pain, etc.) by user i in week t

▶ Treatment: Ait is a binary indicator that user i took
preventive measures (stay indoors, use mask, etc.)

▶ Covariates: baseline variables (age, gender, etc.) and
time-varying variables (smoke exposure, visibility, etc.)

▶ We use n = 1076 users from 2019 and the number of
observations ranges from 1-15

▶ Our objective is determine if using the app leads to a
reduction in symptoms



(2) Propensity scores

Challenges

App-based platforms provide unprecedented opportunities to
reach users, but pose challenges:

▶ Self-selection: Protective behaviors were left to the user
and may depend on their characteristics

▶ Informative missingness: Participants are more likely to
self-report when they experience smoke or symptoms

▶ Spatial variation: The causal effect of treatment may vary
over the study’s large and diverse domain



(2) Propensity scores

Potential outcomes (PO)

▶ For simplicity, we3 drop the user subscript (i) and assume
regular observation times t ∈ {1,2, ...}

▶ History is denoted by overbar, so Ām and X̄m are the set of
values before time m

▶ POs are denoted by ām is the set of treatments before time
m and am is the set of treatment taken after time m < t

▶ The PO at time t is Yt(ām,am)

▶ Our goal is to estimate the causal effect which is the mean
difference between Yt(ām,am) and Yt(ām,0)

▶ We do this within the structured nested mean model of
Robins (1992)

3Wu et al, https://arxiv.org/abs/2005.12017



(2) Propensity scores

Structured nested mean model

▶ The causal effect γ as a function of parameters θ is

E {Yt(ām,am)− Yt(ām,0)|ām, x̄m} = γtm(ām, x̄m;θ) = γtm(θ)

▶ An example with covariate and lagged treatment effects is

γtm(θ) = xmβ + ψ exp

{
−(t − m − µ)2

2σ2

}
am

and θ = {β, ψ, µ, σ}

▶ The treatment at time m = t − µ has the most impact

▶ The magnitude of treatment at lag µ is ψ



(2) Propensity scores

Estimation

▶ Sequential randomization assumption: treatment at time m
is a function only of the propensity score

em = Prob(Am = 1|Ām−1, X̄m, Ȳm−1)

▶ To estimate the lag m effect, we must remove effects for
time l ∈ {m, ..., t − 1}

▶ Let Rtm(θ) = Yt −
∑t−1

l=m γtl(θ) and µtm(θ) = E(Rtm)

▶ The weighted (by wtm) estimating equation is

G(θ) =

nt∑
t=1

t−1∑
m=1

wtm {Rtm(θ)− µtm(θ)} (At − et)



(2) Propensity scores

Spatially-varying effects

▶ We extend this structured nested mean model to allow for
spatially-varying θ

▶ This could lead to tailoring the app to individual
environments

▶ We use geographically weighted (wtm)local polynomial
estimation

▶ The local effect at s∗ is taken to be polynomial in s near s∗

▶ Observations are kernel weighted by distance ||s − s∗||

▶ Double robustness: We prove consistency if either the
potential-outcome or mean models are correct



(2) Propensity scores

Smoke Sense – Local estimate of ψ(s)
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(3) Matching

EXAMPLE: Spatial matching

▶ Commercial fishing is highly regulated for conservation

▶ There is variation in the type and degree of regulation

▶ Using data from global Gill et al 4 we compare two broad
classes of regulations: no take (NT) and multi-use (MU)

▶ Our objective is to compare the relative effectiveness of
these two policies

4Gill et al. (2017). Capacity shortfalls hinder the performance of marine
protected areas globally. Nature, 543, 665–669



(3) Matching

Data and notation

▶ Response: Yi is the log biomass at site i = 1, ...,n = 9987

▶ Treatment: Ai = 1 for NT and Ai = 0 for MU

▶ Covariates: Xi are known covariates

▶ Dependence structure: the n observations are nested in
215 Marine Protection Areas (MPAs)



(3) Matching

Response (Y ) by treatment (A)



(3) Matching

Covariates (X )

Site-level MPA-level

Continuous

Latitude (degree)
Longitude (degree)
Depth (m)
Wave exposure (kW/m)
Distance to shoreline (km)
Distance to market (km)
Coastal population (million/100km2)
Sample date (year)
Minimum sea surface temperature (◦C)
Chlorophyll-A (mg/m3)
Reef area with 15km (km2)
MPA age (years)

MPA size (km2)

Categorical
Habitat type (16)
Marine ecoregion (56)
Sampling protocol (6)

Country (43)



(3) Matching

Dependence structure



(3) Matching

Challenges

▶ The treatment variables are not randomly assigned

▶ The allocation of treatments is likely influenced by biomass

▶ Sites are nested within MPA, giving (spatial) dependence



(3) Matching

Potential outcomes (POs) and assumptions

▶ Yi(a) is the PO under treatment a ∈ {0,1}

▶ The PO model for a site in MPA r is

Yi(a) = µa(Xi) + αr + εi

where αr is an MPA random effect

▶ Assumption: the POs for each unit are not influenced by
the treatment assigned to other units

▶ Assumption: conditional independence between treatment
and the POs when accounting for the covariates



(3) Matching

Matching estimator

▶ We propose a matching estimator to account for spatial
dependence and missing confounders

▶ Each site is matched by space and covariates with M
observations with the opposite treatment

▶ The missing PO (i.e., Yi(0) if Ai = 1) are imputed using the
mean of these M observations

▶ The naive matching estimator for the average treatment
effect (ATE) is

τ̂ =
1
n

n∑
i=1

Yi(1)− Yi(0)

▶ The average treatment effect on the treated (ATT) is similar



(3) Matching

Extensions

▶ The naive estimator is biased if µa(X) varies by a

▶ For fit several regression models including random forests
to remove this bias

▶ Deriving the standard error is challenging because of MPA
effects and sites are members of multiple pairs

▶ We develop a wild bootstrap for this purpose

▶ Theory: We prove that our estimator is consistent and
asymptotically normal



(3) Matching

Results

Table: Summary of the average treatment effect (ATE) and the
average treatment effect on the treated (ATT) with estimated standard
errors in parentheses when comparing the multi-use (MU) policy and
no-taken (NT) policy in MPAs where MU is considered as treatment
group; Response is log (Fish Biomass).

ATE ATT
Point Estimate 95% CI Point Estimate 95% CI

Matching on MPA-level covariates
Sieve Method -0.49 (0.31) (-1.10, 0.13) -0.67 (0.50) (-1.64, 0.30)

Smooth Spline -0.27 (0.25) (-0.77, 0.23) -0.19 (0.38) (-0.93, 0.56)
Regression Forest -0.57 (0.35) (-1.26, 0.12) -0.82 (0.49) (-1.77, 0.13)

Matching on all covariates
Sieve Method -0.41 (0.17) (-0.76, -0.07) -0.58 (0.26) (-1.10, -0.06)

Smooth Spline -0.34 (0.30) (-0.93, 0.26) -0.41 (0.41) (-1.22, 0.40)
Regression Forest -0.70 (0.32) (-1.32, -0.07) -1.03 (0.53) (-2.06, 0.00)



(4) Mean adjustments

EXAMPLE: Adjusting for unmeasured spatial
confounders

▶ The key assumption that there are no missing confounders
is generally impossible to verify

▶ However, it may be possible to remove the effects of
unmeasured confounders that are smooth spatial functions

▶ We propose a method to adjust for missing spatial
confounding variables using spectral methods.

▶ Motivating example Wu et al (2020) 5 found that an
increase of 1 µg/m3 in PM2.5 is associated with a 15%
increase in the COVID-19 mortality rate.

5
Wu, Nethery, Sabath, Braun, Dominici (2020). Air pollution and COVID-19 mortality in the United States:

Strengths and limitations of an ecological regression analysis, Science Advances.



(4) Mean adjustments

Exposure variable, PM2.5 concentration

4 8 12
mean PM2.5

The exposure variable X is county-level average exposure to
PM2.5 for 2000-2016



(4) Mean adjustments

Outcome variable, log mortality rate

−12 −10 −8 −6
Log(deaths/population)

The response variable Y is the cumulative COVID-19 mortality
counts through May 12, 2020 for US counties.



(4) Mean adjustments

Our approach

▶ We assume that local information is more informative than
global information

▶ If you could design the experiment you would assign
different A(s) to neighbors, right?

▶ We propose a joint model for A and the unobserved spatial
confounder, X 6

▶ We derive the optimal confounder adjustment under the
joint model

▶ We then discuss assumptions needed to identify the
parameters in the counfounder adjustment

6
See Schnell and Papadogeorgou (2019) for areal data, Dupont, Wood and Augustin (2020) for splines and

Stokes and Purdon (2017) for time series.



(4) Mean adjustments

Unmeasured confounders

▶ X (s) is unknown or not measured

▶ Obviously, additional assumptions are required to estimate
its correlation with A(s)

▶ We assume [A(s),X (s)] follows a bivariate spatial GP

▶ Then X can be written X (s) = X̂ (s) + δ(s) where

▶ X̂ (s) = E{X (s)|A}

▶ δ(s) is a Gaussian process that is independent of A



(4) Mean adjustments

Unmeasured confounders

The observation equation then becomes

Y (s) = α+ A(s)βA + X̂ (s)βX + δ(s) + ϵ(s)

▶ X̂ (s) is the required confounder adjustment

▶ The spatial term δ(s) is independent of A

▶ Therefore, if we know X̂ we eliminate spatial confounding

▶ But how to estimate X̂?



(4) Mean adjustments

We model A and X using spectral methods

▶ If A and X are stationary they have spectral
representations

▶ The spectral representations are

X (s) =

∫
exp(iωT s)x(ω)dω

A(s) =

∫
exp(iωT s)a(ω)dω

▶ ω ∈ R2 is a frequency

▶ x(ω) and a(ω) are mean zero and independent across ω



(4) Mean adjustments

Spectral decomposition in 1D
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(4) Mean adjustments

Spectral decomposition in 1D
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(4) Mean adjustments

We model X and A using spectral methods

▶ Dependence is measured by the coherence1:

α(ω) = Cor{x(ω),a(ω)}

which we allow to vary by frequency

▶ However, we assume that

lim
||ω||→∞

α(ω) = 0

and prove that we can identify the treatment effect

▶ This allows for confounding of large-scale features (small
ω) but assumes independence at small scales (large ω)

▶ This is a similar motivation for matching spatial neighbors

1
Kleiber (2017) has a good review



(4) Mean adjustments

Model in the spatial domain

▶ The model in the spatial domain is

Y (s) = β0 + A(s)βx + X̂ (s)βX + δ(s) + ϵ(s)

▶ The confounder adjustment is

X̂ (s) =
∫

K (u − s)A(u)du,

where K (u − s) is the inverse Fourier transform of α(ω)

▶ X̂ is a smoothed version of A that is included to adjust for
spatial confounding

▶ The methods can be fit using standard MCMC/ML methods



(4) Mean adjustments

Plot of the covariate A (left) versus X̂ (right)

νXZ = 1νX νXZ = 3νX



(4) Mean adjustments

COVID mortality/PM
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Summary

▶ Spatial causal inference is an important and
rapidly-evolving area

▶ We have covered a wide variety of methods, and this is just
the surface

▶ For a more complete review of spatial causal inference,
see Reich, et al. (2020). A review of spatial causal
inference methods for environmental and epidemiological
applications. International Statistical Review

▶ Thanks to the NIH (R01ES031651-01,R01ES027892-01)
and NSF (DMS-2152887)
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