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Motivation

• Extremal streamflow is a key measure of flood risk

• Quantifying how the probability and magnitude of extreme
flooding events are changing is key to mitigating their impacts
under changing climate

• We use data from the USGS Hydro Climatic Data Network (HCDN)

• These stations are selected because they are relatively
unaffected by human activity

• We use data from 1972–2021 at 487 stations with complete data

• The extreme value at a spatial location for given a year is the
annual maximum of daily streamflow observations
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USGS Hydro Climatic Data Network

Sample 0.9 quantile of log annual streamflow (m3/s) by station
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Scientific objectives

1. Estimate return levels at each location using spatial modelling
to borrow information across sites

2. Estimate joint exceedences probabilities to quantify regional risk

3. Test for changes over time in flood risk (as defined by 1. and 2.)
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Spatial extreme value analysis

• Gaussian processes (GPs) are the workhorses of spatial statistics

• GPs inadequate for modeling extremes because they focus on
deviations around the mean

• Max-stable processes (MSP) are a natural model for extremes,
however:

• Restrictive in the class of dependence types they can incorporate

• Intractable likelihood for even moderately large problems
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Methodological contributions

• For large spatial extremes datasets, we want:

• Expressive and flexible spatial processes

• Computational strategies for intractable likelihoods

• New model: Process mixture model specified as a convex
combination of a GP and an MSP

• New computational algorithm: we use a Vecchia approximation
and, following recent trends1, use machine learning to
approximate the intractable likelihood

1See Polson and Sokolov (2023) for a review
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The process mixture model (PMM)

• We model the extreme observation at spatial location s and year
t, Yt(s), with a generalized extreme value (GEV) distribution:

Yt(s) ∼ GEV{µ(s), σ(s), ξ(s)}

• The GEV parameters µ, σ and ξ model spatial variability in the
marginal distribution

• The (copula) model is Yt(s) = G{Vt(s); s} where G is the function
so that Yt(s) has the desired marginal distribution

• Spatial dependence is capture by V(s) which is modelled as a
mixture of a GP and a MSP to allow for spatial dependence
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Spatial dependence in the PMM

The process mixture model is

Vt(s) = δRt(s) + (1− δ)Wt(s)

• Rt(s) is an MSP transformed to have exponential margins

• Wt(s) is a GP transformed to have exponential margins

• Rt and Wt are independent with each other and over t

• The parameter δ ∈ [0, 1] controls the dependence regime

• This generalizes Huser and Wadsworth (2019) to have
spatially-varying R
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Asymptotic dependence

• Extremal spatial dependence is quantified by

χu(s1, s2) = Prob{Vt(s1) > qu|Vt(s2) > qu}

where qu is the u quantile

• If the process is isotropic, χu(s1, s2) ≡ χu(h) for h = ||s1 − s2||

• The process is asymptotically dependent if

lim
u→1

χu(h) > 0

• For any fixed h, the PMM is asymptotically dependent iff δ > 0.5

• Unlike the common R model of H&W, the PMM model is
asymptotically independent as h→∞
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Asymptotic dependence: limu→1 χu(h) > 0 iff δ > 0.5
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Spatial dependence: limh→∞ χu(h) = 0 for any δ
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Deep Learning Vecchia approximation for the PMM

• The PMM has desirable properties, but the likelihood function is
intractable even for two observations

• However, it is straightforward to draw samples from the model

• We propose to approximate the likelihood by training deep
learning models to data simulated from the PMM

• Approximating a high-dimensional density is difficult, so we use
a Vecchia approximation reduce the approximation to a
sequence of a univariate problems
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Deep Learning Vecchia approximation for the PMM

• The model has two sets of parameters
• θ1 are the GEV parameters in µ, σ and ξ

• θ2 are the PMM parameter, i.e., δ, the spatial range of Wt(s), etc

• The copula likelihood separates as
fy(y1, ..., yn;θ1,θ2) = fu(u1, ...,un;θ2)

∏n
i=1

∣∣∣∣dFs(yi;θ1)

dyi

∣∣∣∣
• The Vecchia approximation2 for the first term is

fu(u1, ...,un;θ2) =
n∏
i=1

f(ui|θ2,u1, ...,ui−1) ≈
n∏
i=1

fi(ui|θ2,u(i)), (1)

for u(i) = {uj; j ∈ Ni} and neighboring set Ni ⊆ {1, ..., i− 1}

• u(i) is the Vecchia neighboring set
2Vecchia (1988), Stein et al. (2004), Datta et al. (2016), Katzfuss and Guinness (2021)
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Deep Learning Vecchia approximation for the PMM

The Vecchia neighboring set has 10 locations in this example
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Deep Learning Vecchia approximation for the PMM

• There is no analytical form for fi(ui|θ2,u(i))

• It is a function of xi = (θ2,u(i))

• It is approximated using semi parametric quantile regression
(SPQR)3 as:

fi(ui|xi,Wi) =
K∑
k=1

πk(xi,Wi) · Bk(ui) (2)

• M-spline basis functions Bk(u) ≥ 0: satisfy
∫
Bk(u)du = 1 for all k

• The probability weights πk(xi,Wi) are modeled as softmax
outputs from a feed-forward neural network (FFNN)

• The FFNN weights to be learned areWi

3Xu and Reich (2023)
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SPQR implementation

• The approximation of fi is not contingent on real data

• We approximate the density by simulating data from the model
and training SPQR on these synthetic data

• This approximation can be arbitrarily precise because
1. SPQR spans all conditional densities smooth in its arguments
2. The target fi is univariate and xi is low-dimensional
3. We can simulate a massive number of samples to train the model

• Given the FFNN weights/approximate likelihood, parameter
estimation is carried out using standard MCMC
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Computations - local SPQR

1. Generate plausible values of θ2 from a design distribution p∗

2. Generate Uk(s) at s ∈ {si, s(i)} given θ2k for k = 1, . . . ,N

3. Define features xik = (θ2k,u(i)k), where u(i)k = {uk(s); s ∈ s(i)}

4. Solve Ŵi ← argmax
W

∏N
k=1 fi(uik|xik,W) for fi(u|x,W) using SPQR

This strategy is not specific to the GEV/PMM model
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Simulation Study - Process Mixture Model

• Marginal distribution is Yt(s) ∼ GEV{µ0(s) + µ1(s) · t, σ(s), ξ(s)}

• GEV parameters set to be smooth functions of space

• Rt and Wt both have powered exponential dependence functions
with power set to one

• Their effective spatial ranges are the same

• Data generated at 50 locations and 50 time points per location

• We fit the model with GP priors for the GEV parameters and
uninformative priors for other parameters

• SPQR settings: 50 epochs, batch size 100, learning rate 0.001, 2
hidden layers (30, 15 neurons), 15 output knots, 106 obs.
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SPQR model fit diagnostics - PMM
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Sampling distribution of the posterior mean of δ
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Coverage of 95% intervals

µ0 µ1 σ ξ

δ = 0.2 93 96 92 94
δ = 0.8 94 96 92 96

Coverage (%) for marginal GEV parameters under 2 scenarios based
on MCMC simulations over 100 datasets.
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Case study: extreme streamflow data in the US

• HCDN has 489 locations across the US

• We use annual maximum streamflow from 1972–2021

• The plot above is the sample 0.9 quantile at each station
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Spatiotemporally varying coefficients model for the marginals

• Yt(s) is the log annual maxima for year t and location s

• GEV marginals with spatiotemporally varying coefficients

Yt(s) ∼ GEV {µ0(s) + µ1(s) · Xt, σ(s), ξ(s)} , (3)

Xt = (yeart − 1996.5)/10 for yeart = 1972+ t− 1

• The trend parameter µ1(s) captures change per decade at site s
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Model comparisons

Estimates (standard errors) from leave-one-out cross validation and
the Watanabe-Akaike information criterion

PMM HW MSP GP

LOO-CV 29108 (540) 29708 (544) 32058 (583) 33842 (561)
WAIC 29559 (549) 30193 (565) 33441 (552) 34440 (585)

• PMM is the proposed model
• HW is the Huser and Wadsworth model (PMM with Rt(s) ≡ Rt)
• MSP is the max-stable process (PMM with δ = 1)
• GP is the Gaussian process (PMM with δ = 0)
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Spatial correlation parameters

• The posterior means (sd) of the PMM spatial parameters are
δ̂ = 0.45 (0.02), ρ̂ = 807 (45) km, and r̂ = 0.92 (0.004).

• The posterior of δ has a 95% interval of (0.40, 0.49), indicating
the asymptotic independence regime with high probability

• The GEV Matérn smoothness parameter estimate is
κ̂ = 0.60 (0.03)

• The four range parameters (km) are ρ̂µ0 = 12435 (10645),
ρ̂µ1 = 27605 (10689), ρ̂σ = 20311 (11232) and ρ̂ξ = 20320 (11481)
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Joint exceedance probabilities in Colorado

• We compute at the joint posterior probability that all 10 CO sites
exceed their observed 0.90 quantile

• The joint exceedance probability is 0.075 (0.04) in 1972 and 0.170
(0.046) in 2021

• The probability that the joint exceedance in 2021 is higher than
in 1972 is 0.90

• Under independence, the joint exceedance probabilities are all
approximately 10−10
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Summary and Discussion

• Extreme value analysis of climate signals is of growing
importance, but existing methods are often intractable

• The process mixture model identifies patterns of increasing
streamflow due to changing climate within the US

• Flexible, tractable, parallelizable, can take advantage of GPU
acceleration

• Main idea can be applied to virtually any spatial process
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