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Classic air pollution monitoring scheme

I Since the clean air act of 1970, the US EPA has been
monitoring and regulating air pollution

I They rely on a small number of stationary monitors
collecting daily data

I These data are used to

I Uphold national air quality standards

I Follow trends over space and time

I Study health effects of air pollution
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Stationary N02 monitors in NC1

1https://deq.nc.gov/about/divisions/air-quality/air-quality-monitoring
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US average NO2 by year2

2https://www.epa.gov/air-trends/nitrogen-dioxide-trends
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Nonattainment counties3

3https://www3.epa.gov/airquality/greenbook/mapnpoll.html
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Epidemiological studies

I A common approach is to regress daily health outcomes
onto city average daily air pollution4

I A more expensive approach is to estimate individual
exposure for a small number of subjects5

I Health effects are also studied using controlled
experiments6

4e.g., Dominici et al, JAMA, 2006
5e.g., Larkin and Hystad, CEHR, 2017
6https://www.nap.edu/catalog/24618/controlled-human-inhalation-

exposure-studies-at-epa
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Epidemiological studies

These studies have established links between air pollution and
several adverse health outcomes including:

I Cardiovascular diseases

I Respiratory diseases

I Cancer

I Pre-term birth

An estimated 4.2 million premature deaths globally are linked to
ambient air pollution7

7https://www.who.int/airpollution/ambient/health-impacts/en/
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New sources of monitoring data

I Air pollution epidemiology relies on a few stationary
monitors per city

I The field is undergoing a paradigm shift due to
fine-resolution mobile monitors

I We analyze data collected from a car driving around the
city and continuously measuring air pollution

I Some cities now have thousands of low-cost stationary
sensors

I Phone apps are under development
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Data from Google StreetView cars8

8Photo: Apte (2017)
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Mobile data: Oakland NO2

I Two cars were deployed from June 2015 to May 2016

I Starts on weekdays at ≈ 9am, drove ≈ 6-8 hours each day

I Measurements are taken at roughly every second.

I Large missing data (car maintenance, sensor failure, etc.)
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Example daily observations of log(NO2)

I Car A and B drove from 8am - 2pm
I 12,389 observations, covered less than a third of Oakland
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Objectives

Develop a statistical model for real-time, high resolution
forecasting of air pollution

I Can we develop accurate maps for epi studies?

I Can we make forecasts that help people avoid exposure?

I How far ahead can we reasonably forecast air pollution?

I How many cars should be deployed future studies?

I Are cars more efficient than stationary monitors?

Brian Reich, NC State Spatiotemporal methods for mobile monitoring data 13 / 37



Statistical challenges

I Data are large (n ≈900,000 observations)

I Data are streaming

I Data are extremely sparse in space and time

I Data are noisy and subject to outliers

I Process is likely dynamic and nonstationary
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Temporal aggregation

We took temporal block medians to dampen effects of extremes
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Example landuse covariates
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Principal components of landuse variables
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Non-spatial landuse regression

Let Yt(s) be the log(NO2) at time t and location s

Yt(s) = Xt(s)Tβ + εt(s), εt(s)
iid∼ N (0, τ2)

where Xt(s) contains

I The first seven PCs

I Four trig functions for hourly diurnal cycle

I Interactions between the PCs and trig functions

R2 ≈ 0.16 and residuals are correlated
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Results from landuse regression
Observed vs. Predicted, Oct. 29, 2015 – Dec. 18, 2015
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Results from landuse regression
Observed vs. Predicted, Oct. 29, 2015 – Dec. 18, 2015
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Spatiotemporal landuse regression model

I We add a spatiotemporal process to capture dependence

Yt(s) = Xt(s)β + ηt(s) + εt(s), εt(s)
iid∼ N(0, τ2)

I The Gaussian process η has covariance

Cov
{
ηt(s), ηt ′(s′)

}
= σ2exp

{
−
√
||s− s′||2/ρ+ |t − t ′|2/φ

}
I The range parameters ρ and φ determine the extent of

spatial and temporal dependence

I The covariance parameters to be estimated are
θ = {σ2, τ2, ρ, φ}
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Computation

I Maximum likelihood analysis is impossible

I The likelihood depends on function of the spatial
covariance matrix, which is huge (n × n)

I Overcoming this computational bottleneck is one of the
main challenges in spatial statistics

I There are now many approaches9

9e.g., Heaton et al, 2019, JABES
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Computation

I We use the Veccia approximation to estimate the
covariance parameters

I Training the model based on the joint distribution of all the
observations is too slow

I Instead we regress the current observation Yi onto the
recent past Ni

I If Ni = {Y1, ...,Yn−1} this is exact and slow

I If Ni ⊂ {Y1, ...,Yn−1} this is approximate and fast
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Computation

I The neighboring sets are observations in the recent past

Ni = {obs between l and l + u minutes prior to obs i}

I The results are insensitive to u so we set u = 60

I Taking l = 0 gives the best approximation to the likelihood

I Often it ts better to include some distant neighbors10

I We pick l by cross-validation

10Gramacy and Apley, 2015, Technometrics
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Cross validation design

I Train the model using both cars’ data prior to time t

I Predict the value for both cars at time t + h for
h ∈ {5,15,60} minutes

I We compare the non-spatial (“X”), spatial (“S”) and
spatiotemporal (“ST”) methods

I We also compare fitting the model using one car’s data
and predicting the other car (“Car AB”)

I Methods are compared using the correlation between
observed and predicted

I Repeat using raw data (1 sec) and 1-minute block medians
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Prediction correlation using 1 sec block medians

Prediction lag
Model l 5 mins 15 mins 60 mins Car AB

X - 0.18 0.18 0.18 0.08
S - 0.27 0.27 0.27 0.09

ST 0 0.45 0.25 0.18 0.09
ST 5 0.58 0.36 0.28 0.10
ST 15 0.57 0.36 0.31 0.10
ST 60 0.55 0.38 0.28 0.09
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Prediction correlation using 1 min block medians

Prediction lag
Model l 5 mins 15 mins 60 mins Car AB

X - 0.28 0.28 0.28 0.19
S - 0.34 0.34 0.34 0.21

ST 0 0.59 0.44 0.29 0.26
ST 5 0.64 0.56 0.46 0.26
ST 15 0.64 0.56 0.45 0.26
ST 60 0.63 0.55 0.45 0.26
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Estimated diurnal trends
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Correlation parameter estimates

Block Spatial Spatial Temporal
size l R2 ratio range (km) range (hr)
1 sec 0 1.00 0.95 0.19

5 0.63 4.82 3.83
15 0.54 3.95 9.53
60 0.77 1.38 2.32

1 min 0 0.92 3.52 0.23
5 0.64 5.21 9.24
15 0.57 5.43 28.72
60 0.60 3.62 4.19
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15 minutes ahead forecasts of NO2

I Forecast for 15:00 using the data from 13:45 to 14:45 on
May 5, 2016

I As expected, standard errors are lowest where data has
been obtained most recently from the two cars.

Brian Reich, NC State Spatiotemporal methods for mobile monitoring data 30 / 37



Dynamic model

I We envision the model being refitted periodically to adapt
to evolving environmental, traffic and emissions patterns

I We refit the model in a sliding window of training data to
study changes in parameter estimates and performance

I For each week from 12/07/2015 to 05/13/2016, we use the
data from the previous w weeks to train the model

I We compute 15-minute ahead prediction mean squared
error for that week

I We use l = 60 and 15-second block median data
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Dynamic model – Spatial range estimates (w = 21)

Blue dots are estimates, black dots are bootstrap samples
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Dynamic model – Temporal range estimates (w = 21)

Blue dots are estimates, black dots are bootstrap samples
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Dynamic model – prediction MSE
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Network design
How many cars should be deployed? How many fixed-location
sensors would provide the same quality of prediction?

Deploy mobile and stationary sensors and simulate data
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Network design
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Summary and future projects

I Our work11 shows that short-term forecasting of air
pollution at a high spatial resolution is possible

I Future work:

I Fuse mobile and stationary sensors
I Model extremes
I Multi-city analysis
I Design efficient sampling routes

I Works supported by NIH and NSF

I THANKS!

11Guan et al (2020). Fine-scale spatiotemporal air pollution analysis using
mobile monitors on Google Street View vehicle. In press, Journal of the
American Statistical Association.
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