Fine-scale spatiotemporal air pollution analysis using mobile monitors on Google Street View vehicles

Brian Reich

Department of Statistics, NCSU

Department of Biological and Agricultural Engineering, NCSU, 2020

Collaborators

Yawen Guan, Margaret Johnson, Matthias Katzfuss, Elizabeth Mannshardt, Kyle Messier and Joon Jin Song

Classic air pollution monitoring scheme

- Since the clean air act of 1970, the US EPA has been monitoring and regulating air pollution
- They rely on a small number of stationary monitors collecting daily data
- These data are used to
 - Uphold national air quality standards
 - Follow trends over space and time
 - Study health effects of air pollution

イロト イポト イヨト イヨト

Stationary N02 monitors in NC1

1https://deq.nc.gov/about/divisions/air-quality/air-quality-monitoring = > = >

US average NO₂ by year²

NO2 Air Quality, 1980 - 2018

(Annual 98th Percentile of Daily Max 1-Hour Average) National Trend based on 22 Sites

²https://www.epa.gov/air-trends/nitrogen-dioxide-trends _> < => < => _=

Nonattainment counties³

³https://www3.epa.gov/airquality/greenbook/mapnpoll.html

Brian Reich, NC State

Epidemiological studies

- A common approach is to regress daily health outcomes onto city average daily air pollution⁴
- A more expensive approach is to estimate individual exposure for a small number of subjects⁵
- Health effects are also studied using controlled experiments⁶

exposure-studies-at-epa

4 3 5 4 3 5

⁴e.g., Dominici et al, JAMA, 2006

⁵e.g., Larkin and Hystad, CEHR, 2017

⁶https://www.nap.edu/catalog/24618/controlled-human-inhalation-

Epidemiological studies

These studies have established links between air pollution and several adverse health outcomes including:

- Cardiovascular diseases
- Respiratory diseases
- Cancer
- Pre-term birth

An estimated 4.2 million premature deaths globally are linked to ambient air pollution⁷

New sources of monitoring data

- Air pollution epidemiology relies on a few stationary monitors per city
- The field is undergoing a paradigm shift due to fine-resolution mobile monitors
- We analyze data collected from a car driving around the city and continuously measuring air pollution
- Some cities now have thousands of low-cost stationary sensors
- Phone apps are under development

イロト イポト イヨト イヨト

Data from Google StreetView cars⁸

⁸Photo: Apte (2017)

Brian Reich, NC State

(日) Spatiotemporal methods for mobile monitoring data 10/37

э

.⊒...>

Mobile data: Oakland NO₂

Two cars were deployed from June 2015 to May 2016

Starts on weekdays at \approx 9am, drove \approx 6-8 hours each day

Measurements are taken at roughly every second.

Large missing data (car maintenance, sensor failure, etc.)

・ロト ・同ト ・ヨト ・ヨト

Example daily observations of log(NO₂)

- Car A and B drove from 8am 2pm
- 12,389 observations, covered less than a third of Oakland

イロト イポト イヨト イヨト

Objectives

Develop a statistical model for real-time, high resolution forecasting of air pollution

- Can we develop accurate maps for epi studies?
- Can we make forecasts that help people avoid exposure?
- How far ahead can we reasonably forecast air pollution?
- How many cars should be deployed future studies?
- Are cars more efficient than stationary monitors?

イロト イポト イヨト イヨト

Statistical challenges

▶ Data are large (*n* ≈900,000 observations)

- Data are streaming
- Data are extremely sparse in space and time
- Data are noisy and subject to outliers
- Process is likely dynamic and nonstationary

・ロト ・同ト ・ヨト ・ヨト

Temporal aggregation

We took temporal block medians to dampen effects of extremes

A D > A P > A E

> ∢ ≣

Example landuse covariates

Highway
Major
Residential

Commerical Industrial Residential NA

イロト イポト イヨト イヨト

Э

Principal components of landuse variables

イロト イポト イヨト イヨト

э

Non-spatial landuse regression

Let $Y_t(s)$ be the log(NO₂) at time *t* and location s

$$Y_t(\mathbf{s}) = X_t(\mathbf{s})^T \boldsymbol{\beta} + \epsilon_t(\mathbf{s}), \quad \epsilon_t(\mathbf{s}) \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \tau^2)$$

where $X_t(s)$ contains

- The first seven PCs
- Four trig functions for hourly diurnal cycle
- Interactions between the PCs and trig functions
- $R^2 \approx 0.16$ and residuals are correlated

イロト イポト イヨト イヨト

Results from landuse regression

Observed vs. Predicted, Oct. 29, 2015 - Dec. 18, 2015

Results from landuse regression

Observed vs. Predicted, Oct. 29, 2015 - Dec. 18, 2015

Spatiotemporal landuse regression model

We add a spatiotemporal process to capture dependence

$$Y_t(s) = X_t(s)\beta + \eta_t(s) + \epsilon_t(s), \quad \epsilon_t(s) \stackrel{iid}{\sim} N(0, \tau^2)$$

• The Gaussian process η has covariance

$$\mathsf{Cov}\left\{\eta_t(\mathbf{s}), \eta_{t'}(\mathbf{s}')\right\} = \sigma^2 \mathsf{exp}\left\{-\sqrt{||\mathbf{s} - \mathbf{s}'||^2/\rho + |t - t'|^2/\phi}\right\}$$

- The range parameters ρ and φ determine the extent of spatial and temporal dependence
- The covariance parameters to be estimated are $\theta = \{\sigma^2, \tau^2, \rho, \phi\}$

イロト イポト イヨト

Computation

Maximum likelihood analysis is impossible

- ► The likelihood depends on function of the spatial covariance matrix, which is huge (n × n)
- Overcoming this computational bottleneck is one of the main challenges in spatial statistics
- There are now many approaches⁹

⁹e.g., Heaton et al, 2019, JABES

Computation

- We use the Veccia approximation to estimate the covariance parameters
- Training the model based on the joint distribution of all the observations is too slow
- Instead we regress the current observation Y_i onto the recent past N_i
- If $N_i = \{Y_1, ..., Y_{n-1}\}$ this is exact and slow
- If $\mathcal{N}_i \subset \{Y_1, ..., Y_{n-1}\}$ this is approximate and fast

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Computation

The neighboring sets are observations in the recent past

 $\mathcal{N}_i = \{ \text{obs between } I \text{ and } I + u \text{ minutes prior to obs } i \}$

- The results are insensitive to u so we set u = 60
- Taking I = 0 gives the best approximation to the likelihood
- Often it ts better to include some distant neighbors¹⁰
- We pick / by cross-validation

¹⁰Gramacy and Apley, 2015, Technometrics Brian Reich, NC State Spatiotemporal methods for mobile monitoring data 24/37

Cross validation design

- Train the model using both cars' data prior to time t
- ► Predict the value for both cars at time t + h for h ∈ {5, 15, 60} minutes
- We compare the non-spatial ("X"), spatial ("S") and spatiotemporal ("ST") methods
- We also compare fitting the model using one car's data and predicting the other car ("Car AB")
- Methods are compared using the correlation between observed and predicted
- Repeat using raw data (1 sec) and 1-minute block medians

Prediction correlation using 1 sec block medians

		Prediction lag				
Model	Ι	5 mins	15 mins	60 mins	Car AB	
Х	-	0.18	0.18	0.18	0.08	
S	-	0.27	0.27	0.27	0.09	
ST	0	0.45	0.25	0.18	0.09	
ST	5	0.58	0.36	0.28	0.10	
ST	15	0.57	0.36	0.31	0.10	
ST	60	0.55	0.38	0.28	0.09	

イロト イポト イヨト イヨト

ъ

Prediction correlation using 1 min block medians

		Prediction lag				
Model	Ι	5 mins	15 mins	60 mins	Car AB	
Х	-	0.28	0.28	0.28	0.19	
S	-	0.34	0.34	0.34	0.21	
ST	0	0.59	0.44	0.29	0.26	
ST	5	0.64	0.56	0.46	0.26	
ST	15	0.64	0.56	0.45	0.26	
ST	60	0.63	0.55	0.45	0.26	

イロト イポト イヨト イヨト

ъ

Estimated diurnal trends

ж

Correlation parameter estimates

Block size	Ι	Spatial <i>R</i> ² ratio	Spatial range (km)	Temporal range (hr)
1 sec	0	1.00	0.95	0.19
	5	0.63	4.82	3.83
	15	0.54	3.95	9.53
	60	0.77	1.38	2.32
1 min	0	0.92	3.52	0.23
	5	0.64	5.21	9.24
	15	0.57	5.43	28.72
	60	0.60	3.62	4.19

イロン イボン イヨン イヨン 三日

15 minutes ahead forecasts of NO₂

- Forecast for 15:00 using the data from 13:45 to 14:45 on May 5, 2016
- As expected, standard errors are lowest where data has been obtained most recently from the two cars.

イロト イポト イヨト イヨト

Dynamic model

- We envision the model being refitted periodically to adapt to evolving environmental, traffic and emissions patterns
- We refit the model in a sliding window of training data to study changes in parameter estimates and performance
- For each week from 12/07/2015 to 05/13/2016, we use the data from the previous w weeks to train the model
- We compute 15-minute ahead prediction mean squared error for that week
- ▶ We use *I* = 60 and 15-second block median data

イロト イポト イヨト イヨト

Dynamic model – Spatial range estimates (w = 21)

Blue dots are estimates, black dots are bootstrap samples

Dynamic model – Temporal range estimates (w = 21)

Blue dots are estimates, black dots are bootstrap samples

Dynamic model – prediction MSE

^{🔶 2} Week 📥 6 Week 📥 12 Week 🕂 21 Week 🖶 Static

イロト イポト イヨト イヨト

ж

Network design

How many cars should be deployed? How many fixed-location sensors would provide the same quality of prediction?

Deploy mobile and stationary sensors and simulate data

Network design

Summary and future projects

- Our work¹¹ shows that short-term forecasting of air pollution at a high spatial resolution is possible
- Future work:
 - Fuse mobile and stationary sensors
 - Model extremes
 - Multi-city analysis
 - Design efficient sampling routes
- Works supported by NIH and NSF

THANKS!

¹¹Guan et al (2020). Fine-scale spatiotemporal air pollution analysis using mobile monitors on Google Street View vehicle. In press, *Journal of the American Statistical Association*.