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Classic air pollution monitoring scheme

» Since the clean air act of 1970, the US EPA has been
monitoring and regulating air pollution

» They rely on a small number of stationary monitors
collecting daily data

» These data are used to
» Uphold national air quality standards
» Follow trends over space and time

» Study health effects of air pollution
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Stationary NO, monitors in NC'
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US average NOs by year?

NO2 Air Quality, 1980 - 2018
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Nonattainment counties®

Counties Designated "Nonattainment”
for Clean Air Act's National Ambient Air Quality Standards (NAAQS) ®

08/20/2019

st /& Legend ™
County Designated Nonattainment for 6 NAAQS Pollutants
County Designated Nonattainment for 5§ NAAQS Pollutants
rd County Designated Nonattainment for 4 NAAQS Pollutants
County Designated Nonattainment for 3 NAAQS Pollutants
County Designated Nonattainment for 2 NAAQS Pollutants
County Designated Nonattainment for 1 NAAQS Pollutant

Shttps://www3.epa.gov/airquality/greenbook/mapnpoll.html
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Epidemiological studies

» A common approach is to regress daily health outcomes
onto city average daily air pollution*

» A more expensive approach is to estimate individual
exposure for a small number of subjects®

» Health effects are also studied using controlled
experiments®

4e.g., Dominici et al, JAMA, 2006

Se.g., Larkin and Hystad, CEHR, 2017

Shttps://www.nap.edu/catalog/24618/controlled-human-inhalation-
exposure-studies-at-epa
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Epidemiological studies

These studies have established links between air pollution and
several adverse health outcomes including:

» Cardiovascular diseases
» Respiratory diseases
» Cancer

» Pre-term birth

An estimated 4.2 million premature deaths globally are linked to
ambient air pollution’

"https://www.who.int/airpollution/ambient/health-impacts/en/
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New sources of monitoring data

» Air pollution epidemiology relies on a few stationary
monitors per city

» The field is undergoing a paradigm shift due to
fine-resolution mobile monitors

» We analyze data collected from a car driving around the
city and continuously measuring air pollution

» Some cities now have thousands of low-cost stationary
sensors

» Phone apps are under development
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Data from Google StreetView cars®

8Photo: Apte (2017)

Brian Reich, NC State Spatiotemporal methods for mobile monitoring data ~ 10/37



Mobile data: Oakland NO»

v

Two cars were deployed from June 2015 to May 2016

v

Starts on weekdays at ~ 9am, drove ~ 6-8 hours each day

v

Measurements are taken at roughly every second.

v

Large missing data (car maintenance, sensor failure, etc.)
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Example daily observations of log(NO.)

Sept. 10, 2015

logiNO2)

Raw Air Quality Data from Google
=00

e

© CarA ¢ CarB

» Car A and B drove from 8am - 2pm
» 12,389 observations, covered less than a third of Oakland
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Objectives

Develop a statistical model for real-time, high resolution
forecasting of air pollution

» Can we develop accurate maps for epi studies?

v

Can we make forecasts that help people avoid exposure?

v

How far ahead can we reasonably forecast air pollution?

v

How many cars should be deployed future studies?

v

Are cars more efficient than stationary monitors?
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Statistical challenges

v

Data are large (n ~900,000 observations)

v

Data are streaming

v

Data are extremely sparse in space and time

v

Data are noisy and subject to outliers

v

Process is likely dynamic and nonstationary
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Temporal aggregation

March 3, 2016, 15:00
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We took temporal block medians to dampen effects of extremes
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Example landuse covariates

City

of Oakland Zoning

© Highway @ Major ® Residential ¢ Commerical  Industial ¢ Residential ¢ NA

Brian Reich, NC State Spatiotemporal methods for mobile monitoring data ~ 16/37



Principal components of landuse variables
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Non-spatial landuse regression

Let Y:(s) be the log(NO,) at time t and location s

Yi(s) = Xi(s) B + er(s),  ex(s) @ A(0,72)

where X;(s) contains

» The first seven PCs
» Four trig functions for hourly diurnal cycle

» Interactions between the PCs and trig functions

R? ~ 0.16 and residuals are correlated
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Results from landuse regression
Observed vs. Predicted, Oct. 29, 2015 — Dec. 18, 2015

Observed log(NO2) Predicted log(NO2)
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Results from landuse regression
Observed vs. Predicted, Oct. 29, 2015 — Dec. 18, 2015
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Spatiotemporal landuse regression model

» We add a spatiotemporal process to capture dependence
Yi(s) = Xi(8)B + mi(s) + ex(s),  ex(s) " N(0, 72)

» The Gaussian process 7 has covariance

Cov {1(s). ()} = o%exp { /s = '/ + It - 1o

» The range parameters p and ¢ determine the extent of
spatial and temporal dependence

» The covariance parameters to be estimated are
0= {027 7—27 P ¢}
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Computation

v

Maximum likelihood analysis is impossible

v

The likelihood depends on function of the spatial
covariance matrix, which is huge (n x n)

v

Overcoming this computational bottleneck is one of the
main challenges in spatial statistics

v

There are now many approaches®

%e.g., Heaton et al, 2019, JABES
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Computation

» We use the Veccia approximation to estimate the
covariance parameters

» Training the model based on the joint distribution of all the
observations is too slow

» Instead we regress the current observation Y; onto the
recent past V;

» IfN;={Y1,..., Yo_1} this is exact and slow

» IfN; C{Yi,..., Yo 1} this is approximate and fast
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Computation

v

The neighboring sets are observations in the recent past
N; = {obs between / and / + u minutes prior to obs i}

The results are insensitive to u so we set u = 60

v

v

Taking / = 0 gives the best approximation to the likelihood

v

Often it ts better to include some distant neighbors'®

v

We pick / by cross-validation

°Gramacy and Apley, 2015, Technometrics
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Cross validation design

» Train the model using both cars’ data prior to time ¢

» Predict the value for both cars at time t + h for
h e {5,15,60} minutes

» We compare the non-spatial (“X”), spatial (“S”) and
spatiotemporal (“ST”) methods

» We also compare fitting the model using one car’s data
and predicting the other car (“Car AB”)

» Methods are compared using the correlation between
observed and predicted

» Repeat using raw data (1 sec) and 1-minute block medians
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Prediction correlation using 1 sec block medians

Model

Prediction lag
5mins 15 mins 60 mins Car AB

ST
ST
ST
ST

o

15
60

0.18 0.18 0.18 0.08
0.27 0.27 0.27 0.09
0.45 0.25 0.18 0.09
0.58 0.36 0.28 0.10
0.57 0.36 0.31 0.10
0.55 0.38 0.28 0.09
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Prediction correlation using 1 min block medians

Model

Prediction lag
5mins 15 mins 60 mins Car AB

ST
ST
ST
ST

o

15
60

0.28 0.28 0.28 0.19
0.34 0.34 0.34 0.21
0.59 0.44 0.29 0.26
0.64 0.56 0.46 0.26
0.64 0.56 0.45 0.26
0.63 0.55 0.45 0.26
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Estimated diurnal trends
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Correlation parameter estimates

Block Spatial Spatial Temporal
size | | R?ratio range (km) range (hr)
1isec O 1.00 0.95 0.19
5 0.63 4.82 3.83
15| 0.54 3.95 9.53
60 | 0.77 1.38 2.32
imin 0 0.92 3.52 0.23
5 0.64 5.21 9.24
15| 0.57 5.43 28.72
60 | 0.60 3.62 4.19
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15 minutes ahead forecasts of NO»

Observed Data, 9:00 - 14:45 15:00 Forecast 15:00 Standard Error

N \ &\
X >
Raw Air Quality. Data frot Google i \ < b X .
— e L =
2 3 4 2 3 4 050 055 060

» Forecast for 15:00 using the data from 13:45 to 14:45 on
May 5, 2016

» As expected, standard errors are lowest where data has
been obtained most recently from the two cars.
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Dynamic model

» We envision the model being refitted periodically to adapt
to evolving environmental, traffic and emissions patterns

» We refit the model in a sliding window of training data to
study changes in parameter estimates and performance

» For each week from 12/07/2015 to 05/13/2016, we use the
data from the previous w weeks to train the model

» We compute 15-minute ahead prediction mean squared
error for that week

» We use / = 60 and 15-second block median data
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Dynamic model — Spatial range estimates (w = 21)
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Blue dots are estimates, black dots are bootstrap samples
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Dynamic model — Temporal range estimates (w = 21)
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Dynamic model — prediction MSE
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Network design

How many cars should be deployed? How many fixed-location
sensors would provide the same quality of prediction?

Deploy mobile and stationary sensors and simulate data
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Network design
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Summary and future projects

» Our work'" shows that short-term forecasting of air
pollution at a high spatial resolution is possible
» Future work:
» Fuse mobile and stationary sensors
» Model extremes
» Multi-city analysis
» Design efficient sampling routes
» Works supported by NIH and NSF
» THANKS!

""Guan et al (2020). Fine-scale spatiotemporal air pollution analysis using
mobile monitors on Google Street View vehicle. In press, Journal of the
American Statistical Association.
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